The USACE Dredged Material Management Decisions (D2M2) Tool

DOTS Webinar Wednesday Jan 28, 2014

Presented by: Matthew Bates <u>Matthew.E.Bates@usace.army.mil</u>

ERDC EL Risk and Decision Science Team

BUILDING STRONG_®

Background

- The US Army Corps of Engineers spends nearly \$1 billion annually dredging sediments from public waterways.
- This secures access for over 2.2 billion tones of commercial shipping, plus national security and recreation.
- Strategic placement of dredged material can be complex, involving many objectives, interactions, & constraints.

Background

- Typical complexities include:
 - Multiple stakeholders with opposing interests.
 - Public interest in both costs & environmental effects.
 - Many potential site factors/variables to consider.
 - Limited placement site availability & timing.
- Decision analysis & multi-objective optimization can help.

D2M2: The "Dredged Material Management Decisions" Tool

Three D2M2 Modules:

- Optimization: Networked system of dredging & placement sites, routes, and links, optimization criteria, and tradeoff weights to calculate optimal and alternative solutions.
- <u>Decision Analysis</u>: Tools to screen/rank potential sites or management plans.
- <u>GIS:</u> Input regional dredging sites, link to national datasets, generate routes between sites (or, alternatively, upload site data from an Excel template).

D2M2 Optimization Module

- Originally developed several decades ago, recently updated
- Provides a dynamic optimization-model-builder tool
- "Mixed Integer Linear Programming" approach
- Flexible, unique model formulation in each case:
 - Min/Max weighted sum of some multi-objective value function
 - Subject to set of volume & user defined system constraints
 - Given fixed and variable costs/impacts/effects for links and source & sink nodes (piecewise linear by volume & distance)
- Exclude prior solutions to explore near-optimal space

D2M2 Optimization Module

Untitled - D2M2J-LPS					
ile <u>E</u> dit <u>V</u> iew <u>R</u> un <u>T</u> ools <u>H</u> elp					
D 🗀 🖫 🖳 🌱 (M 🗈 🖻 🖷 📓 🗲					
Explorer 🔲 🗱 🖓 🗋 Diagram		Properties			
& 2* 😱 🛕 🔰 🔵 🔺 💙 😂 100% 💽					
F Test USACE Projec		General		A	
V 📄 Dredge Sites		Туре	Project		
		Name	Test USACE P	rojec	
Dredge Sit		User Name	-		
Dredge Sit		Discount Rate	0		
Transfer Sites		System of Units	English		
T 🔓 Default Placement	Site #3	Map Units	Statute Mile		
Transfer Si		Periods			
🔻 🗁 Placement Sites		Period increment	Annual		
▼ 🔓 Default		Number Of Periods	10		
Placement Transfet Site #1 Dredge Site #2		First Period			
Placement Link #5		Year	2015		
Placement		Increment	-		
🔻 📄 Links		Optimization			
🔻 📄 Default		Optimization Objective	Minimize	v	
Link #1 Placement Site #1		Optimization Criteria	Cost; 0.7; true;	Ere	
Link #2		Constraints			
		User Specified Operation	-	•	
		System-Wide Constraint		+	
Link #5					
Equipment					
Dredge Categori Project developed by					

D2M2 Optimization Module

- Typical data requirements (can be flexible):
 - Identify dredging sites and volumes over time.
 - Identify placement sites and capacities.
 - Identify any transfer sites (e.g., where cost curves transition).
 - Identify site details related to placement & transfer site costs, benefits, timelines for availability, O&M, material reuse, constraints, etc.
 - Develop links between possible source-sink site pairs.
 - Develop cost & benefit curves that relate the outcomes of moving material from site A to site B. (These can be generalized, with components drawn from the source site, placement site, and transportation link.)

Two Case Studies to Summarize

1. Long Island Sound

- Based on data from the LIS dredged materials management plan.
- ► Completed in 2013/2014.
- 2. Galveston Bay and Houston Ship Channel
 - Ongoing phased project for the Galveston district & RSM program.
 - Part of a larger team involving USACE staff & researchers from ERDC and the Galveston and Mobile districts.

Long Island Sound Dredged Material Management Plan Working Group

38.5 million cubic vards of dredged material produced in 30 years Majority of combined needs from CT: New Haven ~8.7 million cy Bridgeport ~4.6 million cy New London ~2.5 million cy Connecticut River ~2.4 million cy Clinton/Westbrook ~2.4 million cy Norwalk ~2.2 million cy

ONG ISLAND SOUND

BER MATERIAL MANAGEMENT PLAN WORK

Long Island Sound: D2M2 Case Study Scope

LIS Case Study Approach

- Strategically connect each dredging site with a subset of relevant placement sites to represent the <u>system network</u>.
- Add <u>capacity and volume</u> information for dredging and placement sites in each of six five-year time periods.
- Include <u>basic details</u> about placement site acquisition time and cost, lease end dates and potential renegotiation costs, O&M management costs, potential for beneficial reuse, etc.
- Include <u>additional details</u> about material bulking factors, transfer sites, site-specific costs and effects, equipment use, etc.
- Add <u>constraints</u> for links & sites by type, year and volume.

LIS Case Study Data

- Cost estimates from USACE New England engineering team:
 - Relative comparison for LIS region based on placement type.
 - Costs defined in terms of an initial cost and per unit (cy*mi) costs.
 - ► 50 cost curves generated for each type of equipment, volume, & distance.

LIS Case Study Data

Effect (impact/benefit) data from LIS reports & SME judgment:

Cultural EffectsShipwrecks, Historic Districts, Archaeological SitesEnvironmentalWetlands, Federal and State Listed Species, Shellfish, Federally Managed Species, Submerged Aquatic Vegetation (SAV), Marine Protected Areas, Birds, Marine Mammals, Terrestrial WildlifeInfrastructure EffectsMooring Areas, Navigation Channels and Shipping, Ports, Coastal Structure, Cable/Power/Utility Crossings, Recreational Areas, Commercial and Industrial Facilities, Aquaculture, Dredged Materials Disposal SitesPhysical EffectsSediments, Littoral Drift, Currents, Waves	<u>Criteria</u>	Sub-Criteria
EnvironmentalWetlands, Federal and State Listed Species, Shellfish, Federally Managed Species, Submerged Aquatic Vegetation (SAV), Marine Protected Areas, Birds, Marine Mammals, Terrestrial WildlifeInfrastructure EffectsMooring Areas, Navigation Channels and Shipping, Ports, Coastal Structure, Cable/Power/Utility Crossings, Recreational Areas, Commercial and Industrial Facilities, Aquaculture, Dredged Materials Disposal SitesPhysical EffectsSediments, Littoral Drift, Currents, Waves	Cultural Effects	Shipwrecks, Historic Districts, Archaeological Sites
Infrastructure EffectsMooring Areas, Navigation Channels and Shipping, Ports, Coastal Structure, Cable/Power/Utility Crossings, Recreational Areas, Commercial and Industrial 	Environmental Effects	Wetlands, Federal and State Listed Species, Shellfish, Federally Managed Species, Submerged Aquatic Vegetation (SAV), Marine Protected Areas, Birds, Marine Mammals, Terrestrial Wildlife
Physical EffectsSediments, Littoral Drift, Currents, Waves	Infrastructure Effects	Mooring Areas, Navigation Channels and Shipping, Ports, Coastal Structure, Cable/Power/Utility Crossings, Recreational Areas, Commercial and Industrial Facilities, Aquaculture, Dredged Materials Disposal Sites
	Physical Effects	Sediments, Littoral Drift, Currents, Waves

LIS Case Study Data

Placement site effect (impact/benefit) data from LIS reports & SME judgment:

		Cultural Effects						Environmental Effects							Infrastructure Effects									Physical Effects				s			
Case Study Placement Site	Site Type	Description	Shipwrecks	Historic Districts	Archaeological Sites	Total	Wetlands	Federal and State Listed Species	Shellfish	Federally Managed Species	SAV	Marine Protected Areas	Birds	Marine Mammais Terrestrial Wildlife		IOtai Monring Areas	Navigation Channels and Shinning	Ports	Coastal Structure	Cable/Power/LItility/ Crossings	Recreational Areas	Commercial and Industrial Facilities	Anuaculture	Dredged Material Disposal Sites	Total	Sediments	Littoral Drift	Currents	Waves	Total	Total Effects Score
Blydenburgh Road Landfill Complex	Landfill - Upland	create new landfill site				0		1		1			1		1	4									0					0	4
Town of Brookhaven Landfill	Landfill - Upland	create new landfill site				0		1		1			1		1	4									0					0	4
Southold Municipal Beaches	Beach Nourishment	create new beach nourishment site				0	-1	1	1	1			-1	1		2			-	1	-	1			-2		1		1	2	2
Manchester Landfill	Landfill - Upland	create new landfill site				0		1		1			1		1	4									0					0	4
Jacobs Beach	Beach Nourishment	create new beach nourishment site				0		1	1	1		1	-1	1		4			-	1	-	1			-2				1	1	3
Madison Municipal Beaches	Beach Nourishment	create new beach nourishment site				0		1	1	1		1	-1	1		4			-	1	-	1			-2				1	1	3
Westerly Municipal Beaches	Beach Nourishment	create new beach nourishment site	1			1		1	1	1			-1	1		3			-	1	1 -	1			-1		1		1	2	5
Norton Basin/Little Bay borrow pits	Marsh Creation	create new habitat restoration site				0	-1	1	-1	1		1	-1	-1	-	-1				1					1	1				1	1
Plum Island	Redevelopment - Upland	create new redevelopment site	1			1		1	-1	1	1	1	-1	-1		1				1			-*	1	0	1	1			2	4
Western Long Island Sound	Open Water	create new open water site				0		1	1	1				1		4		1							1	1				1	6
Central Long Island Sound	CAD Cell	create new CAD Cell site				0		1	1	1				1		4		1							1					0	5
Cornfield Shoals	Open Water	create new open water site				0		1	1	1				1		4		1							1	1				1	6
New London	Open Water	create new open water site				0		1	1	1				1		4		1							1	1				1	6
Bush Terminal Piers	Brownfield - Upland	create new open water site				0		1		1			-1	-	1	0					-	1			-1					0	-1
Flushing Airport	Redevelopment - Upland	create new redevelopment site	1			1	1	1		1			-1			0					-	1 -	1		-2	1	ιT			1	0

*Note: Positive values represent impacts, negative values represent benefits. Here, these values derived from expert judgment informed by the LIS report details. In practice, these values should come directly from relevant studies.

LIS Case Study System Network

*Note: Straight line indicate logical connection between site pairs, nonlinear transit distance can be used in the calculations.

LIS Case Study Modeling Scenarios

- Compare optimal recommended dredging plan under three scenarios: 100% cost, 100% effects (split evenly), & 50/50.
- Results show:
 - Cost-centric scenario favors open water disposal, with minimal other (e.g., beneficial) uses.
 - Effects-centric scenario favors beneficial uses, with minimal open water or landfill placement.
 - 50/50 scenario uses a mix of open water, landfill, and beneficial uses for placement, depending on how the location, costs, and effect implications play out for each potential pair of sites.

LIS Case Study Results

....

Galveston Bay & Houston Ship Channel Case Study

(Ongoing project)

BUILDING STRONG®

Galveston Projects: D2M2 Case Study Scope

- Houston Ship Channel

--- GIWW: High Island to Brazos River

RSM Placement Area Optimization and DMMP Modernization

Project 1: RSM Placement Area (PA) Optimization for the Houston Ship Channel (HSC) in Galveston Bay. Evaluate optimization of the navigation channel network, historical sedimentation and dredging, and system of placement areas within the Galveston Bay region focusing on the Houston Ship Channel (FY14/15).

Project 2: DMMP Modernization Gulf Intracoastal WaterWay: High Island to Brazos River Reach. Populate enterprise databases, integrate tools, and transfer technology which will assist SWG in streamlining Preliminary Assessments and DMMP technical analyses (FY15).

BUILDING STRONG®

D2M2 in Relation to Other Data & Tools

19

Galveston HSC Dredging Needs: Bathymetry

Galveston HSC Dredging Needs: Shoaling Rates

Galveston HSC Placement Areas & Capacities

Galveston HSC Placement Area Details

		А	В	С	D	E	F	G	Н	
		_								
	1 N	lame	Project	Date Of Capacity	Capacity	Placements	Remaining Capacity	Percent Remaining	Туре	4
	2 0	A Collegen Island	HOUSTON SHIP	4 101 12	8 000 000	4 006 545	2 012 455	48.02	Onen water confined alcomentaria	
	2 P/	A Spliman Island March		4-Jui-12	8,000,000	4,080,545	3,913,433	48.92	Open water commed placement area	
	2 0	A Atkinson Island Warsh		4 101 05	2 000 000	120.005	2 961 015	05.27	open water semi confined placement	
	3 0	enz	CHAININEL	4-Jui-00	3,000,000	138,983	2,801,015	55.37	area	-
	D	A Atkinson Island Marsh	HOUSTON SHIP							
	4 0	ell 1	CHANNEL	4- Jul-06	4 000 000	144 171	3 855 829	96.4	Open water confined placement area	
	P	A Atkinson Island Marsh	HOUSTON SHIP	4 541 66	4,000,000		5,050,025	50.4	Open water semi confined placement	
	5 0	ell 4	CHANNEL	4-jul-06	3,000,000	458,119	2.541.881	84.73	area	
						,	_,,			
			HOUSTON SHIP						Open water semi confined placement	
	6 P.	A Mid Bay Cell 3	CHANNEL	4-Jul-06	4,000,000	2,084,924	1,915,076	47.88	area	
										-
			HOUSTON SHIP							
	7 P.	A Lost Lake	CHANNEL	4-Jul-06	3,000,000	931,572	2,068,428	68.95	Open water confined placement area	
			HOUSTON SHIP						Open water semi confined placement	
	8 P.	A M5/M6	CHANNEL	4-Jul-06	4,000,000	1,814,250	2,185,750	54.64	area	
			HOUSTON SHIP							
	9 P.	A 14	CHANNEL	4-Jul-12	10,000,000	2,319,571	7,680,429	76.8	Open water confined placement area	
			HOUSTON SHIP							
	10 C	linton East Placement Area	CHANNEL	4-Jul-10	6,000,000	249,425	5,750,575	95.84	Onshore placement area	
			HOUSTON SHIP							
	11 <u>P</u>	A Alexander Island	CHANNEL	4-Feb-10	6,500,000	2,356,307	4,143,693	63.75	Open water confined placement area	
			HOUSTON SHIP			7 000 05 0			Open water semi confined placement	
	12 P/	A Mid Bay Cell 1	CHANNEL	4-Jul-10	10,000,000	7,022,054	2,977,946	29.78	area	
	P/	A Atkinson Island Marsh	HOUSTON SHIP	4 1-1 00	4 000 000	1 200 705	0.700.045		Open water semi confined placement	
	13 0	en s		4-Jul-06	4,000,000	1,200,785	2,799,215	69.98	area	
	14 0	A Mid Ray Coll 2		20.5cm 14	13 500 000	746 675	11 753 335	04.03	open water semi confined placement	
	14 17	A MIG BAY CEIL2	CHANNEL	29-5ep-14	12,500,000	/40,6/5	11,753,325	94.03	area	
8	15 D			4-10-10	4 000 000	2 127 690	1 000 000	16 01	Open water confined placement area	
DING STRON	1.5 P	A FEBBY LONG		4-501-10	4,000,000	23 23	1,072,320	40.01	open water commed placement area	afer, better wo
	16 P	lacement Area w/ Buffer	CHANNEL	1-Sep-14	1 000 000 000	5 622 917	994 377 022	AN 99	Open water confined placement area	

Galveston HSC Data for Impact Layers

D2M2: System Network

D2M2: Upload Template

0.	🚽 L) - (L -) =			2014.09.29 -	02M2 SWG upload_LR.xlsx - Microsoft Excel								
9	Home Insert Page	e Layout 🛛 🕞	ormulas Data Revie	ew View ApproveIt A	robat Team								
	A1 🗸 💿	<i>f</i> ∗ D2N	M2 spreadshseet templat	te, use to bulk-upload data in	o D2M2. Enter user-defined inputs in o	olumn C.	-						
4	А		В		С								
1 D	2M2 spreadshseet templat	te. use to bul	k-upload data into D2M2	2. Enter user-defined inputs in	column C.								
2				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
3 V	ariable Names	Comments	or possible values		User-Defined Project Properties		_						
4 \Lambda	ame	Project			Galveston HSC Area D2M2 Optimization						2014.09.29 - D2M2	SWG upload_LR.xlsx - N	licrosoft Excel
5 1	lser Name				ERDC EL Risk & Decision Science Team			Fermulae	Data Dav		A	Term	
6 D	iscount Rate	0.0			0		Layout	Formulas	Data Rev	iew view	Approveit Acrobat	Team	
7 5	vstem of Units	SI English			English		f_{x}	CLINTON E	AST PLACEMENT	AREA			
8 1	lan Units	Meter Centi	imeter Degree Foot US	Survey Foot Inch Kilometer S	US survey foot			С	D	E	F	G	н
	lap onns Ioriod Incromont	Appual Sor	ni appual Tor appual. Our	artarly Rimonthly Monthly S	Annual		o bulk-u	pload data into l	D2M2.				
	umber of Dericds	not graater H	han 300	arceny, Demonthly, Monthly, S	20			Distance	Maximum Mat	ma Environment	Course alterna	Destination - its -	
	aniber of Ferious	not greater ti	ndn 300		1000			miles	can be blank	me Equipmen	source site name	Destination site name	2
	ear	0	han the langth of the select	ted as fed in concept	1999			2.43	our bo burn	Pipeline (Cutter	hea TC_03_INC_3	PELICAN ISLAND PLACE	EMENT AREA
	icrement	not greater ti	nan the length of the selec	cted period increment	1			6.81		Pipeline (Cutter	hea TC_03_INC_3	PLACEMENT AREA 1 OF	DMDS
13 C	ptimization Objective	Minimize			Minimize			16.41		Pipeline (Cutter	hea TC_03_INC_3	ROSA ALLEN PLACEME	
					Cost, 1.0, True; Oyster Reef Impacts, 0.0	, True; Species, 0.0, True; Oil Gas		0.68		Pipeline (Cutter	heartC_03_INC_3	SHOAL POINT PLACEME	ENT AREA 2
14 C	ptimization Criteria	Cost, 1.0, Tr	rue; NER, 0.0, False		Overlap, 0.0, True			0.49		Pipeline (Cutter	hea TC_03_INC_3	SNAKE ISLAND PLACEN	IENT AREA 5/6
15 U	ser Specified Constraints	semi-colon s	separated sets: { period in	dex/All, link name, >=/<=/=, va	ue}			10.47		Pipeline (Cutter	hea TC_03_INC_3	SPILMAN ISLAND PLAC	EMENT AREA
16 S	ystem Wide Constraints	semi-colon s	separated sets: { period in	dex/All, category name, >=/<=/	=, value}			1.41		Pipeline (Cutter	nea IC_03_INC_3	SPPA 3/4/5	
17 E	ackground Image	path to the fi	ile, holding the background	d image						(Cutterhead) a	nd		
18 D	redge Site Categories	semi-colon s	separated list; item2; item3	3; item4	HSC; GIWW; TC			11.42		Hopper	TC_04_ITB_4	ALEXANDER ISLAND PL	ACEMENT AREA
19 7	ransfer Site Categories	semi-colon s	separated list; item2; item	3; item4				9.44		Pipeline (Cutter Pipeline (Cutter	hea TC_04_IIB_4	ATKINSON IS MARSH C	ELL M10 ELL M7/M8/M9
20 F	lacement Site Categories	semi-colon s	separated list; item2; item	3; item4	Confined Upland; Beneficial Use; Open W	ater; Confined Bay Marsh				Pipeline			
21 L	ink Categories	semi-colon s	separated list: item2: item	3: item4				40.00		(Cutterhead) a	nd		
2 E	quipment Categories	semi-colon s	separated list: item2: item	3: item4	Pipeline (Cutterhead):Pipeline (Cutterhead) and Hopper: Hopper: AVG		16.68		Pipeline	IC_04_IIB_4	CLINTON EAST PLACEN	IENT AREA
23	1-1					,				(Cutterhead) a	nd		
24								16.82		Hopper	TC_04_ITB_4	CLINTON WEST PLACEN	IENT AREA
25								17.40		AVG	TC_04_ITB_4	FILTERBED PLACEMENT	AREA
								17.21		Pipeline (Cutter	hea TC 04 ITB 4	HOUSE TRACT PLACEM	ENT AREA
-		_				427 Link #423		12.96		Pipeline (Cutter	hea TC_04_ITB_4	LOST LAKE PLACEMEN	T AREA
	Α	В	C	D		428 Link #424		7.47		Pipeline (Cutter	hea TC_04_ITB_4	MID BAY PLACEMENT A	REA
	1 D2M2 spreadshseet temp	late use to hull	k-unload data into D2M2	5		429 Link #425		8.56		Pipeline (Cutter	hea TC_04_ITB_4	PA 14	
	2	nate, ase to ban	apiouu uutu into bzmiz.			430 LINK #420 431 Link #427		9.23		AVG	TC 04 ITB 4	PA 15 PA 15 - PA 14 CONNECT	TION PLACEMENT AREA
	3 Equipment Name	Category	Average Fixed Cost	Distance vs Cost		432 Link #428		11.94		Pipeline (Cutter	hea TC_04_ITB_4	PEGGY LAKE PLACEME	NT AREA
	5 Equipment nume	category	semi-colon separated costs.	semi-colon separated set {distance		433 Link #429		2.65		AVG	TC_04_ITB_4	PELICAN ISLAND BENEF	ICIAL USE SITE
	4 non-empty name		one cost per optimization	criterion cost1,, criterion cost i		434 Link #430		2.62		AVG	TC_04_ITB_4	PELICAN ISLAND PLACE	EMENT AREA
	5 Pipeline (Cutterhead)		0; 0;0;0;0;0	0,0,0,0,0; 1,0.7492,0,0,0		435 Link #431 436 Link #432		16.60		Pipeline (Cutter	hea(TC_04_IIB_4	ROSA ALLEN PLACEME	INT AREA
	Pipeline (Cutterhead) and					437 Link #433		3.52		AVG	TC_04_ITB_4	SAN JACINTO PLACEME	NT AREA
	6 Hopper		0; 0;0;0;0;0	0,0,0,0; 1,0.3328,0,0,0		438 Link #434		0.87		AVG	TC_04_ITB_4	SHOAL POINT PLACEME	ENT AREA 2
	/ Hopper		0; 0;0;0;0;0	0,0,0,0; 1,0.2554,0,0,0		439 Link #435		0.68		AVG	TC_04_ITB_4	SNAKE ISLAND PLACEN	IENT AREA 5/6
	o AVG		U; U;U;U;U;U;U	0,0,0,0,0,1,1,0.4265,0,0,0						(Cutterhead) a	nd		
	10					440 Link #436		10.66		Hopper	TC_04_ITB_4	SPILMAN ISLAND PLAC	EMENT AREA
	Placement Site P	Properties 🔬 Ti	ransfer Site PropertiesEquipr	ment Properties Trail 4		441 Link #437		1.60		AVG	TC_04_ITB_4	SPPA 3/4/5	
		0				I	ies 🏑	Placement Sit	e Properties	Transfer Site Prop	perties 🖌 Equipment	Properties Transp	ortation Link Pro

D2M2: ArcMap Plugin with Connection to National Data

Summary Results: D2M2Galveston HSC Case Study

e <u>V</u>iew <u>N</u>avigate

178

75%

If costs and impacts are considered equally important, the optimal routing costs 50% more than the minimize cost scenario, and has a significant relative impact savings for oysters and oil/gas leases

Innovative solutions for a safer, better world

· Layers

SWG RSM Houston Ship Channel Placement Area Optimization Viewer

This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

Help Basemaps **Detailed Results:** Cost

BUILDING STR

SWG RSM Houston Ship Channel Placement Area Optimization Viewer

This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

Help

BUILDING STR

SWG RSM Houston Ship Channel Placement Area Optimization Viewer

This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

10ml

SWG RSM Houston Ship Channel Placement Area Optimization Viewer

This viewer displays the output of the various tools created by ERDC to manage dredged material placement.

Help

Conclusions

D2M2 is a spatial Multi-Objective Optimization tool that helps solve complex & multifaceted material management problems:

- Enables exploration of large sets of potential solutions.
- Enables explicit consideration of multiple objectives (e.g., economic, environmental, stakeholder, etc.).
- Shows opportunity cost/benefit of policy scenarios, etc.
- Adds transparency & replicability to help justify analyses.
- Enables easy scenario & "what if" analysis for future conditions.

Thank You!

Any Questions?

Matthew Bates

Matthew.E.Bates@usace.army.mil

ERDC EL Risk and Decision Science Team

Innovative solutions for a safer, better world

BUILDING STRONG®