Flood Risk Management and Engineering With Nature Collaborative Meeting

US Army Corps of Engineers

BUILDING STRONG®

Value to the Nation USACE Flood Risk Management

Operates 707 dams, 383 major lakes and reservoirs

- ▶ 376M visitors/yr, \$15B in economic activity, 500,000 jobs
- ▶ 24% US hydropower capacity, 3% of US electricity, \$500M in sales

25,000+ km of levees (some coastal)

100 coastal storm damage reduction and related projects including 650 km of shore protection

Water Supply from 153 projects for cities including Washington, DC

~12 Emergency responses per year

(Electricity, debris removal water/ice distribution, temporary roofing, flood fight...)

At the FRM Crossroads

- Floods cannot be controlled
- Damages cannot be completely prevented
- Safety comes at a price
- Flood risk management is paramount importance
 - ► Including determination of and communication of residual risk

NOLA, 2005

A dynamic risk-based management culture

USACE Project Lifecycle

- Planning
- Design
- Construction
- Operation and Maintenance
- Recapiltalization
- Decomissioning/Disposal

	O&M	Recapitalization		Disposal	
Yr 1		10	30		50

Goal: Develop process to inform investment decisions based on measure of reliability and risk

Flood Risk Management Doctrine

Overarching Approach

Adaptive Management Measure responses to interventions within systems to adjust planning, construction and operations in response to changing conditions. State-of-the-Art **Technology** and Communication Improve resiliency of structures Consequence analysis (especially populations) Integrated Undate design criteria Water Resources Improve approaches to planning / design Leverage remote sensing / GIS / nanotechnology / . Ask which projects will fail to perform as designed Management the likelihood of failure, and the consequences Coastal / River Information System **Systems**

Collaboration and Partnering

River basins / Watersheds / Coastal zones Multiple organizations contribute to problem-solving From INDIVIDUAL projects to INTERDEPENDENT systems Leverage funding, data, and talent

From IMMEDIATE to LONG-TERM solutions Single actions trigger > 1 system responses / reactions

Approach

Risk-Informed

Decision Making

Forestall possible failure mechanisms

Quantify / communicate residual risk

Recognize limits in disaster prediction

Recognize limits in structural protection

Efficiencies, given scarce resources ophisticated state / interstate organizations Tribes, local governments, non-profit organizations Partnering with profit-making organizations a next step

Life-Cycle Risk Management

Shared Disaster Risk Management

All Stakeholders contribute to reducing risk!

Risk-Informed Decisionmaking

RISK = expected value of an unwanted event which may or may not occur

Step 1: Screening Step 2: P (Consequence | Threat) Step 3: P (Threat) Consequences Vulnerability Threat ("Threat - Agnostic" (Internal) (External)

A rigorous process of:

"Threat-Agnostic" Consequences Prioritization "Threat-informed" Vulnerability Assessment Probabilistic Prioritization of Investments Consistent Analysis of Alternatives Common Operating Picture Systems / Portfolio "Mastery"

			Relative Risk Value Matrix (1-5 Matrix)						
/	_		Overall Project Condition Classification						
	`	Condition	F (1)	D (2)	C (3)	B (4)	A (5)		
Consequence		Failed	Inadequate	Probably Inadequate	Probably Adequate	Adequate			
Consequence Category	1	High	1	1	2	2	3		
	2	Medium High	1	2	2	3	4		
	3	Medium	2	2	3	4	4		
	4	Low	2	3	4	4	5		
	5	Minimal	3	4	4	5	5		

Life-Cycle Risk Management

"Getting Ready"

Actions taken **BEFORE** the event, including planning, training, and preparations

Flood Risk Management system assessment / inspections

Monitoring / forecasting threats

State and Local Coordination

Reservoir operations

Flood Fight Preparation

"Driving Down the Risks"

Activities that PREVENT a disaster, reduce its chance of happening, or reduce its damaging effects.

Modify mitigation plans

Identify future mitigation opportunities

Develop system improvements

"The Flood Fight"

Actions taken DURING the initial impact of a disaster, including those to save lives and prevent further property damage

Emergency system strengthening

Monitor and report flood impact

Monitor system performance

Support State / Local FF

"Getting back on our feet"

Actions taken AFTER the initial impact, including those directed toward a return to normalcy.

Repair damaged systems

Assess and document system performance

.........

.....

Implement mitigation measures / system improvements

Shared Disaster Risk Management

"Driving Down the Risks with an Informed and Engaged Public "

All Stakeholders contribute to reducing risk!

National Water Resource Challenges

National Challenge: Flood-Prone Areas

- Development continues to increase
- Rapid growth in at-risk coastal areas
- Investments decreased by ~70% in real terms over past 3 decades.
- Over \$15 billion awaiting construction

Greenville, MS, Matfield

Bolivar Peninsula, TX

National Challenge: Aging Water Infrastructure

- Many infrastructure projects 50+ years old
- Investments in water resources infrastructure declining in real terms
- Result: more frequent closures for repairs, decreased performance & costly delays

National Challenge: Asset Management & Infrastructure Recapitalization

- Deliver reliable infrastructure through use of risk-based assessments
- Risk-informed strategy applied to budget process
- Optimize use of limited resources across multiple business lines

National Challenge: Environmental Sustainability

- Balance between economic development, environmental stewardship
- Water quality threatened on 8% of nation's rivers and streams
- Corps has authority and programs for ecosystem restoration.

National Challenge: Integrated Water Resources Management

- Planning based on watershed/ regional approach
- Ecosystem restoration
- Environmental sustainability
- Interagency coordination
- Involve all stakeholders

FRM and R&D Nexus Strategic Needs & Priorities

- Determine Risk & Uncertainty for Project Alternatives Evaluation & Performance
- Optimize Design & Management of Resilient Coastal & Estuarine Resources
- Assess Comprehensive & Multidisciplinary Management of Watersheds
- Improve Flood Risk Management & Water Control Infrastructure Resiliency & Reliability
- Enable effective disaster preparation, response & recovery
- Engineering with nature to enhance ecosystem and processes, benefits and services
- Deliver sound engineering and scientific solutions that meet Planning Modernization guidelines

Civil Works R&D Process

- Produces requirement-driven program
- Short-term requirements
- Strategic requirements
- Leverages other Corps programs
- Collaborate with field and others
- Documentation: SOP

Research Area Review Group Roles & Responsibilities

- Communicate R&D needs and requirements
- Evaluate proposed R&D products and review their development
- Oversee beta applications of initial R&D products
- Serve as an advocate for infusing completed R&D products into practice
- Advise wrt balance of tactical and strategic R&D investment
- Review program status
- Engage in technology transfer
- Discuss and prioritize R&D needs for program development

Program CoP Input

https://technology.erdc.dren.mil

Search below to connect with ERDC experts, products, and capabilities.

Q

These tools are used for ERDC Technology Transfer & Infusion. Click on each to access directly.

https://wiki.erdc.dren.mil

FRM & Engineering With Nature Mississippi River Example

>70M souls in the MS River Basin

12M homes on the river

Comprehensive public works to provide flood protection following 1927 flood

\$123B investment in H₂0 control infrastructure

27 locks and dams between MO and MN that alter flow

Mississippi River (Cont'd)

MS named one of "America's Most Endangered Rivers" for 2011 – American Rivers

Repeated catastrophic flooding including 2011

Criticism: Outdated FRM measures/strategies

Criticism: Over-reliance on levees

35M acres of wetland/floodplain in upper MS cut off by levees

FRM Opportunity? Beneficial Functions of Floodplains

Floodplain benefits to name a few...

Storage: 1 acre x 1' depth =

330k gallons

Conveyance

Water quality/ sedimentation

Habitat

FRM Opportunity? CRP in Urbanized Watersheds

Indian Creek Basin, IA

Current Land Use

Targeted Riparian CRP Gain

FRM Opportunity? Policy

WRDA'07 called for new Principles and Guidelines for all federal water resource projects

New standards must protect the environment by:

Maximizing sustainable economic development

Avoiding unwise use of floodplains

Protecting & restoring natural systems (i.e., floodplains)

Incorporate non-structural measures

"Room for Water"
"Living with Water"
"Room for the River"

. . .

Widen floodplains
Lower floodplains
Structural overtopping
Diversions
Channel deepening
Storage areas

FRM Opportunity? RhEPS for Levee Slope Stability

Transition biopolymer technology from MIL R&D to CW levee and dam applications

Immediate benefit of of improved cohesion of soil particles

Long-term benefit of rapid, full vegetation of soil cover

FRM Opportunity? RhEPS Sand Boil Mitigation Concept

FRM Opportunity? Stream/Bank Restoration

Floodplain functionality

 Climate uncertainty

 Stream bank stability and vegetation/revegetation

FRM Opportunity? Reservoir Sediment Management

Delta Formation
Tuttle Creek Reservoir, KS

Passing Sediment Sanmenxia Dam, Yellow River,

FRM Opportunity? Wave Dissipation by Vegetation

- Guidance to describe wave dissipation by natural features, and engineering tool development
- Complement traditional coastal protection
- Maximize ecological benefits and services

Coastal Storm Modeling System

(CSTORM-MS)

Where do we go from here?

